On the Location of the Zeros of Certain Polynomials
نویسندگان
چکیده
Abstract. We extend Aziz and Mohammad’s result that the zeros, of a polynomial P (z) = ∑n j=0 ajz , taj > aj−1 > 0, j = 2, 3, . . . , n for certain t ( > 0), with moduli greater than t(n − 1)/n are simple, to polynomials with complex coefficients. Then we improve their result that the polynomial P (z), of degree n, with complex coefficients, does not vanish in the disc |z − ae| < a/(2n); a > 0, max |z|=a |P (z)| = |P (ae)|,
منابع مشابه
Some compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملBounds for the Zeros of a Class of Lacunary–type Polynomials
In this paper, we present certain results concerning the location of the zeros of lacunarytpye polynomials which generalize and refine some known Cauchy type bounds for the zeros of polynomials.
متن کاملOn Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کامل